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Abstract The theory of micropolar fluids was formulated by Eringen. A similarity solution is
used to investigate the flow of such a fluid driven by a continuous porous plate. Continuous
surfaces are surfaces such as polymer sheets or filaments continuously drawn from a dye. Within
the framework of the boundary-layer theory, similarity transformation is used for the specific case
when the wall velocity varies linearly with component. A physical characteristic of the fluid is used
as a perturbation parameter to obtain a first estimate solution. Using a perturbation technique,
analytical solutions for large transfer rates are presented. Then, a quasilinearization is used to
obtain a complete solution. Good agreement is found between solutions obtained with these
different methods and with the numerical data in Hassanien and Gorla (1990).

Nomenclature
û; v̂ = velocity in x̂ and ŷ-

direction
N̂ = angular velocity
x̂; ŷ = distance along and normal

to the surface
� � �����������

c=v:ŷ
p

= similarity variable
 = stream function
V � V̂0=

�����
c�
p

= dimensionless rate mass
transfer

� = density of the fluid
G; k:�:� = dimensionless material

parameters
g = dimensionless microrotation
f = dimensionless velocity

function
k = material coefficient

Defining equations
In this paper, we study the flow of an incompressible micropolar fluid (see
Eringen, 1996) driven by a stretching sheet subject to `̀ suction'' or `̀ blowing''.
Hassanien and Gorla (1990) have numerically studied certain variations of this
boundary value problem. Recently, one exact solution has been achieved both
for the flow field and temperature distribution via a method of successive
approximation (Hady, 1996). In all cases, a stipulated power law distribution
for the temperature and the Eckert number depends on the longitudinal
position. It should be pointed out that the relation between the exponents of
velocity (m) and temperature () distributions must be  � 2:m in order to
obtain a real Eckert number (see Schlichting, 1968, chap. XII). Unfortunately,
compared with a numerical solution, some (tiny) differences between these
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solutions are to be found particularly in the case of a negative exponent of the
power law (see Hady, 1996, p. 102). The scope of this paper is to obtain various
solutions for the flow field and to analyse the effects of the rate of mass transfer
and of the characteristic k on the velocity and the wall friction coefficient.

According to Hassainien and Gorla (1990), the governing equations of a
steady, incompressible micropolar fluid within the boundary layer
approximation may be written as:

@û

@x̂
� @v̂

ŷ
� 0 �1�

û:
@û

@x̂
� v̂:

@v̂

@ŷ
� �1@

@2û

@ŷ2
� k

�
� @N̂

@ŷ
�2�

G:
@2N̂

@ŷ2
ÿ 2:N̂ÿ @û

@ŷ
� 0 �3�

In the above equations, û and v̂ are the dimensional velocity components in the
x̂ and ŷ directions, N̂ represents the microrotation.

The conservation equations give, within the framework of the symplifying
assumptions, a complete description of the physical occurences within the fluid.
But, in order to complete the statement of the problem, we still have to specify
the boundary conditions.

We assume that the velocity of a point on the porous plate is proportional to
its distance from the leading edge ; it will be supposed that the no-slip condition
of viscous flow continues to apply at the surface of the sheet. Furthermore,
velocity V̂0 normal to the sheet specifies the mass injection or withdrawal:

ŷ � 0 : û � c:x̂ � Ûw; v̂ � V̂0; N̂ � 0 �4�
At large distances from the sheet, the conditions are as follows:

ŷ!1; limû � 0; limv̂ � 0; limN̂ � 0 �5�
For a shape-preserving boundary-layer profile, we stipulate that there exists a
stream function  (equation (1) is automatically satisfied) which depends on a
classical similarity variable � � �����������

c=�:ŷ
p

. Using the definitions:

 �
�����������
c:�:x̂:
p

f ���; N̂ �
��������������
c3=�:x̂:

p
g��� �6�

equations (2) and (3) are, respectively transformed into (primes denote the
differentiation with respect to �):

f 000 � f :f 00 ÿ f 02 � k

�:�
:g0 � 0 �7�

(there is a typographical error in equation (7) of Hassanien and Gorla (1990):
term f has been omitted)
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G:c

�
g00 � 2:g � f 00 �8�

In terms of the new variable, the transformed boundary conditions are:

f �0� � V̂0������
c:�
p � V ; f 0�0� � 1; g�0� � 0

lim
�!1 f 0 � 0; lim

�!1 g � 0

�9�

Physical property k: a perturbation development
According to Pipkin (1972), who wrote:

In order to get correct answers when using slow motion approximations, it is necessary to use
ordinary perturbation methods, starting from the Newtonian (Navier-Stokes) solution as the
lowest-order approximation,

for small values of " � k=�:��, we stipulate that the similarity functions may
be expanded into the next regular perturbation expansions:

f � f0 � ":f1 � "2:f2 � . . .

g � g0 � ":g1 � "2:g2 � . . .
�10�

and substitute them into the boundary-layer equations (7) and (8). Collecting
terms in equal powers of ", we can successively separate the different terms
into third-order ordinary differential equations, the first four of which are:

f 0000 � f0:f
00
0 ÿ f 020 � 0

f 000k � f0:f
00
k ÿ 2:f 00:f

0
k � fk:f

00
0 �

ÿ g0kÿ1 ; k � 1

ÿ g0kÿ1 ÿ f1:f
00
1 � f 021 ; k � 2

ÿ g0kÿ1 ÿ f1:f
00
2 ÿ f2:f

00
1 � 2:f 01:f

0
2; k � 3

8>><>>:
�11�

At any stage, the microrotation equation is identical to:

G:c

�
g00k � 2:gk � f 00k ; k � 0 �12�

Equations (11) and (12) are subjected to the following conditions:

f0�0� � V ; f 00�0� � 1 ; g0�0� � 0

fk�0� � f 0k�0� � gk�0� � 0 ; k � 1

lim
�!1f 00 � 0 ; lim

�!1g0 � 0

lim
�!1f 0k � 0 ; lim

�!1gk � 0 ; k � 1

�13�
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At the leading order, the differential equation (11 ; k = 0) is nearly identical with
a particular one obtained by Falkner and Skan. A previous study (Desseaux,
1998) gives an analytical solution:

f0 � V � �1ÿ B�=� � � ÿ B=�

B � exp�ÿ�:�� ; � �
��������������
V 2 � 4

p
� V

� �
=2

�14�

Introducing (14) in the first order equation (12) for g0, we have:

g000 ÿ
2:�

G:c
:g0 � ÿ �:�

G:c
:B �15�

This ordinary differential equation is linear. Depending on the relative values
of 2:�=�G:c� and �2, the two alternative solutions are:

�2 6� 2:�

G:c
) g0 � C B ÿR� �

C � �
2
:

r2

r2 ÿ �2
; r � ��2:�=�G:c��1=2 ; R � exp�ÿr:��

�16�

or

�2 � 2:�

G:c
) g0 � �

2

4
:�:B �17�

For any value of k � 1, the homogeneous part of equation (11) can be written
as:

f 000k � �:f 000k ÿ
B

�
: f 00k � 2:�:f 0k � �2:fk

ÿ � � 0 �18�

and we can immediately find a solution:

fk � Ak:B � Bk: �:B � � ÿ B

�

� �
fk � Ak:f

0
0 � Bk: �:f

0
0 � f0

ÿ � �19�

Unfortunately, we have not found the third independent solution of (18). So, we
need to use a numerical procedure to complete a solution.

Solutions for large mass transfer rates
In this section, we derive a solution of equations (7) and (8) valid for jV j very
large. We start considering the case of fluid withdrawal

Strong suction V!1
We start by putting

W � jV j ; � � ÿ�=W

f ��� � ÿW :'��� ; g��� � W : ��� �20�
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Equations (7) and (8) become

'02 ÿ ':'00 � ÿ'000=W 2

 � 1

2
:

1

W 2
:

G:c

�
: 00 � '00

� � �21�

subject to the following conditions:

'�0� � 1 ;'0�0� � 1 ; lim
�!1

'0 � 0

 �0� � 0 ; lim
�!1

 � 0
�22�

Equations (21) suggest looking for a solution expanding

'��;W� � '0��� � 1

W 2
:'1��� � . . .

 ��;W� �  0��� � 1

W 2
: 1��� � . . .

�23�

At leading order, we obtain a solution satisfying the conditions (22):

'0 � exp��� � D ;  0 � 0 �24�
The continuation to O�Wÿ2� is straightforward. The first resulting equation is:

'001 ÿ 2:'001 � '1 � ÿ1 �25�
The solution is:

'1 � D ÿ �:D ÿ 1 �26�
Introducing (23a) in (8), equation for g needs to be:

G:c

�
:g00 ÿ 2:g � D

W
:

1� �
W 2
ÿ 1

� �
�27�

The solution for this equation is:

g � K1D � K2:�:D � K3:R �28�
with

K1 � 1

W
:

1

2:W 2 ÿG:c=�
: W 2 ÿ 1ÿ 2:G:c=�

2:W 2 ÿG:c=�

� �
K2 � 1

W 2
:

1

2:W 2 ÿG:c=�
; K3 � ÿK1

�29�

The dimensionless wall shear stress f 00�0� and the gradient of microrotation
g0�0� are calculated and lead to:
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f 00�0� � Wÿ1: Wÿ2 ÿ 1
ÿ �

g0�0� � K1: r ÿWÿ1
ÿ �� K2 ; r � � 2:�=�G:c�� �1=2

�30�

On Figures 1 and 2, we plot values of ÿf 00�0� and g0�0� obtained from
numerical integration of equations (7) and (8) for two values of k=�:�. We can
see that these curves approach the asymptotic forms (30a) and (30b) as
W !1. For instance, the variation of k=�:� is negligible as soon as W > 4:0.

Strong injection V !1
The solution of equation (7) is relatively standard and in keeping with a
previous study (Desseaux, 1998), we put:

f ��� � V � ����
V

; g��� � 	���
V

;� � V :� �31�

1,0

0,8

0,6

0,4

0,2

0,0
0,0 1,0 2,0 3,0 4,0 5,0

Key
eq. (30a)

0.0

0.5

W

–f”(0)

Figure 1.
Variation of the

dimensionless wall
shear stress ÿf 00�0�

equation (30a); influence
of the physical

parameter k=�:� using
the quasilinearization

scheme
(k=�:� � 0 � dots;

k=�:� � 0:5 = squares);
G:c=� � 2:0

0,3

0,2

0,1

0,0
0,0 1,0 2,0 3,0 4,0 5,0

Key
eq. (30b)

0.0

0.5

W

g’(0)

Figure 2.
Variation of the wall

gradient of
microrotation g�0�

equation (30b); influence
of the physical

parameter k=�:� using
the quasilineatization

scheme
(k=�:� � 0 = dots;

k=�:� � 0:5 = squares);
G:c=� � 2:0
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Equations (7) and (8) become

�000 � �00 � �02 ÿ �:�00 ÿ k

�:�
	0

� �
V 2

	00 ÿ �00=
G:c

�
� 2:	=

G:c

�

� �
=V 2

�32�

subject to the following conditions:

��0� � 0 ; �0�0� � 1 ; lim
�!1

�0 � 0

	�0� � 0 ; lim
�!1

	 � 0
�33�

Equations (32) suggest looking for a solution expanding

���;V� � �0��� � 1

V 2
:�1��� � . . .

	��;V� � 	0��� � 1

V 2
:	1��� � . . .

�34�

At leading order, we obtain a solution satisfying conditions (33a):

�0��� � 1ÿ exp�ÿ�� � 1ÿX �35�

but to obtain a solution for the microrotation verifying all the conditions (33b),

we need to use the next equation:

G:c

�
:	00 ÿ 2

V 2
:	 � �000 � ÿX �36�

The solution for this equation is:

	0 � �

G:c
:

1

�2 ÿ 1
:�X ÿR� ; R � exp�ÿr:�� ; r �

��������
2:�

G:c

r
;� � r

V
�37�

The continuation to O�Wÿ2� is straightforward. The first resulting equation is:

�0001 � �001 � 1� k

�:�
:
�

G:c
:

1

�2 ÿ 1

� �
:X ÿ k

�:�
:
�

G:c
:

�

�2 ÿ 1

� �
:R �38�

The solution is:

�1 � Q1:�:X � Q2:X � Q3:R � Q4 �39�

with
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Q1 � 1� k

�:�
:
�

G:c
:

1

�2 ÿ 1
; Q3 � Q1 ÿ 1

�:��ÿ 1�
Q2 � Q1:��ÿ 2� � 1

�ÿ 1
; Q4 � Q1:�1ÿ �� ÿ 1

�

�40�

At this stage, it is interesting to observe that:

. the solution depends only on the ratio of the two physical parameters
k/G;

. the dimensionless coefficient of the wall shear stress is independent of
the physical parameters k/�:� and G.c/�.

The calculation of the unknown wall derivatives gives:

f 00�0� � ÿ V � Vÿ1
� �

; g0�0� � �

G:c
:

1

�� 1
�41�

We solved equations (7) and (8) numerically for increasing values of V for two
values of the physical parameter k/�:�. The results for ÿf 00�0� and g0�0� are
shown in Figures 3 and 4. Asymptotic expression (41) is also shown in these
figures. We can see that the solutions are in very good agreement even at quite
moderate values of V ; the curves are approaching each other as required by the
theory. The validity of development (34a) limited to the second order is
acceptable if the wall mass transfer is greater than 3.0. We need to calculate the
second order approximation for (34b) with results (35) and (39).

Numerical procedures
Solution of (11) and (12)
In this section, we consider the different approximations fk�k � 1� of equations
(11) which are linear. So, we may construct a solution Sk � f ; f 0; f 00; g; g0� �t with
a linear combination (depending on a parameter !) of two independent
solutions which are:

6

5

4

3

2

1

0
0,0 1,0 2,0 3,0 4,0 5,0

Key
eq. (41a)

0.0

0.5

V

–f”(0)

Figure 3.
Comparison of the
dimensionless wall

shear stress ÿf 00�0�;
influence of the physical

parameter k=�:�
equation (41a) with

quasilinearization
(dots = k=�:� � 0;

squares = k=�:� � 0:5)
G:c=nu � 2:0
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(1) A particular solution Sp of equations (11) and (12) (k � 1) with
conditions

Sp�0� � o; o; f 00kÿ1�0�; 0; g0kÿ1�0�
� �t �42�

(for the first step, we have used S001 �0� � 0).

(2) A solution for the homogeneous part

f 000k � f0:f
00
k ÿ 2:f 00:f

0
k � fk:f

00
0 � 0

G:c

�
:g00k ÿ 2:gk � 0

�43�

with initial conditions Sh�0� � �0; 0; 1; 0; 1�t:
Parameter ! in the combination S � Sp � !:Sh can be split up into two
coefficients. These coefficients are calculated, in a single step, with equality (37)
deduced from condition at infinity (15):

0 � f 0p��max� � !f :f
0
h��max� ; 0 � gp��max� � !g:gh��max� �44�

Here �max is `̀ sufficiently large'' to ensure that exp�ÿ�:�max�; f 00��max�, and
g0��max� are less than a typical value (e.g. 10ÿ4). For instance, in case of
moderate suction (V � ÿ3:0) equation (14) gives � � 0:30 and we have found
f 0�30� > 10ÿ4.

Quasilinearization method
Equation (7) represents a two-point non-linear third-order differential equation.
To compare the solution obtained with developments (10), (20) and (31) and
check the validity, we have solved the set of equations (7) and (8) using a quasi-
linearization scheme described in Desseaux (1998) and Zagustin et al. (1978).

0,40

0,30

0,20
0,0 1,0 2,0 3,0 4,0 5,0

Key
eq. (41b)

0.0

0.5

V

g’(0)

Figure 4.
Variation of the wall
gradient of micrrotation
g�0�equation (41b) (plain
line); influence of the
physical parameter
k=�:� using the
quasilinearization
scheme
(k=�:� � 0 = dots;
k=�:� � 0:5= squares);
G:c=� � 2:0
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Let f�j�; g�j� be an approximate solution and f�j�1�; g�j�1�, an improved solution
of system (7)-(8). A first order Newton's development around the former
solution gives the two linear coupled equations

f 000�j�1� � ÿ f 00�j�1�:f�j� � 2:f 0�j�1�:f
0
�j� ÿ f�j�1�f 00�j� ÿ

k

�:�
g0�j�1�

� f 00�j�:f�j� ÿ f 02�j�
� �

g00�j�1� �
�

G:c
2:g�j�1� � f 00�j�1�
h i �45�

The numerical procedure used also a linear combination
S � Sp � �:Sh1 � �:Sh2 where Sp and Sh represent respectively a particular
solution of system (45) and solutions of the homogeneous part which verify the
following initial conditions:

Sp�0�j�j�1� �
�
V ; 1; f 00�j��0�; 0; g0�j��0�

�t

Sh1�0� ��0; 0; 1; 0; 0�t
Sh2�0� ��0; 0; 0; 0; 1�t

8>>>><>>>>: �46�

The first estimate values are given by f�0� � f0 (14) and g�0� � g0 (16) or (17).
Verifying the conditions at infinity (9b), the weighting coefficients � and � are
calculated at each stage from the two next equations:

0 � f 0p � �:f 0h1 � �:f 0h2j���max
; 0 � g0p � �:gh1 � �:gh2j���max

�47�

Results
Remarks
A typographical mistake (one sign) is to be found in Hady's analytical solution.
Equation (22) of Hady (1996) should be read as:

f � V � Aÿ Bÿ A:exp�ÿ��� ÿ D:
1

�
:exp�ÿ��� ÿ �:

r2
:exp�ÿr��

� �
A � V :� � 1

�3
; B � k

2:�:�
:

1

�
; D � k

2:�:�
:

r2

�2 ÿ r2
; r �

��������
2:�

G:c

r �48�

Comparison
Table I indicates the effect of the mass transfer parameter V on the wall
friction. We observe that suction V < 0 reduces the friction factor as well as
the wall gradient of microrotation, whereas the injection V > 0 has the
opposite effect. Our numerical values agree well with Hassanien and Gorla
(1990); our `̀ approximate'' solutions obtained with a perturbation technique (10)
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are closer to the values of Hassanien and Gorla (1990) than those of Hady
(1996).

In Figure 5 we have shown the microrotation distribution for a moderate
suction. We observe that our development (28) is in very good agreement with
our numerical results obtained with a quasilinearization scheme. A difference is
marked only when the physical parameter k=�:� is greater than 0.5.

In Figure 6 we analyse the relative influence between the two physical
parameters k=�:� and G:c=� using the quasilinearization scheme. For
the plain line, we have used k=�:� = 0.2 and G:c=� = 1.0. For the other
line, these parameters are equal to 1.0 and 5.0. We can see that the
results are quite identical for the same ratio G:�:c=k. We compare these results

0,10

0,08

0,06

0,04

0,02

0,00

–0,02
0 4 8 12

Key
1.0

0.2

eq. (28)

g

Figure 5.
Comparison of the
profiles of microrotation
g���; influence of the
physical parameter
k=�:� equation (28)
(dots k=�:� = 0.2;
squares k=�:� = 1.0);
G:c=� = 2.0; W � jV j
= 2.0

Table I.
Comparison of the
missing wall gradient
values ÿf 00�0� and
g0�0�. Values issued
from Hady (1996) and
Hassanien and Gorla
(1990), our perturbation
development (11) and
(12) and a
quasilinearization
scheme (45);
Gc=� � 2:0
k=�� � 0:2

Hady (1996)
equation (48)

Hassanien and
Gorla (1990) (11) (45a)

ÿf 00�0�
V
±0.7 0.69979 0.6984 0.69961
0 0.97500 0.99081 0.99075 0.99098
0.4 1.19781 1.21183 1.2162 1.2118
0.7 1.39003 1.40265 1.4136 1.4027

Hady (1996) Hassanien and
Gorla (1990)

(12) (45b)

g0�0�
V
±0.7 0.20819 0.20718 0.20797
0 0.25316 0.25121 0.25119 0.25129
0.4 0.27812 0.27622 0.27761 0.27622
0.7 0.29585 0.29405 0.29696 0.29408
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with the dimensionless velocity profiles issued from the asymptotic
development (34a). It gives quite identical results for the same values of G:c=�.
We observe that for the two cases (G:c=� = 1.0 dots ; G:c=� = 5.0
black squares) decreasing the parameter k=�:� decreases the boundary-layer
thickness.

Conclusion
In this paper, we have used the theory of micropolar fluids formulated by
Eringen (1966), to derive a set of boundary-layer equations for the micropolar
fluid flow over a stretching sheet. We have considered in some detail the
similarity solutions considering the influence of the physical parameters. A
perturbation technique has been used to analyse the influence of microrotation
and wall mass transfer on the velocity distribution. A numerical procedure
using the quasilinearization scheme has been used to compare all the
previously published data and to confirm our developments.
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